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Abstract

The contact problem of a rigid notch with a rubber wedge is analyzed by asymptotic method. The stress and strain
field near the apex of the rubber wedge is shown to be singular, but the angular distributions of quantities are uniform.
The analytical conclusion is verified by the results of finite element calculation. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The earliest solution to contact problem was given by Hertz (1881) for two spherical bodies, based on
linear elastic theory. When the contact surfaces contain vertex, the problem cannot be solved in the
framework of infinitesimal strain theory. In Gao and Gao (2000), the vertex contact problem was solved
based on the elastic law given by Gao (1997). The result in Gao and Gao (2000) shows that there are two
shrinking sectors and one expanding sector surrounding the apex of rigid wedge. When the angle of rigid
wedge tends to 7 the solution becomes invalid and the singularity disappears. The smooth contact problem
of a rubber wedge with a rigid notch is investigated in the present paper. The deformation pattern and
analytical result of this paper are quite different from that case analyzed by Gao and Gao (2000).

2. Basic equation

Consider a three dimensional domain of rubber material, let P and Q denote the position vectors of a
point before and after deformation, respectively. x'(i = 1,2, 3) is the Lagrangian coordinate. Two set of
local triads can be defined as

opP 0Q

Pi:&7 Qz:& (1)
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Three independent invariants can be introduced,

[:(Pi'Pj)'(Qi'Qj)v I—lz(Pi'Pj)'(Qi'Qj)

J =Vo/Ve (2)

in which summation rule is implied. P' and Q' are the conjugates of P; and Q; respectively, V, = (%, 3, *3)
with (x;, *,, *3) being the mixed product of vector =i, *,, and %3, Let W denote the strain energy per
undeformed unit volume, then the Cauchy stress can be expressed as

ow
0Q;

where ® is the dyadic symbol.
Gao (1997) gave a strain energy form

W=a(l"+1")) 4)

r=J"!

®Q (3)

where a and n are material constants.
From Eqgs. (3) and (4) it follows that

T =2na ' (I"'d - 1"{'d7") (5)
where
d=(P P)Q®Q, d'=(P P)QcQ (6)

The material behavior according to Eq. (5) was discussed in detail by Gao and Gao (1999). For small strain
case, let

¢=5d-U) (7)
U is unit tensor
U=P,®P =Q,2Q (8)
then Eq. (5) is reduced to
T =8na3"'[e — L(n — 1)ijU] 9)
in which
ih=¢:U (10)
Evidently, when ¢ — 0, 7 vanishes. Besides, Young’s modulus and Poisson’s ratio are
2
:%3%, v:2”n+11 (11)
The equilibrium equation can be written as
%(VQT-Qi) =0 (12)

3. Asymptotic equations

Shown in Fig. 1(a) and (b) are the cross-section of a rigid notch with a rubber wedge before and after
deformation respectively. 24 and 2B denote the angles of rigid notch and rubber wedge.
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Fig. 1. Contact of a rubber wedge with a rigid notch: (a) before deformation, (b) after deformation.

In order to describe the deformation, two Lagrangian coordinates are taken such that (R, ©,Z2) is cy-
lindrical coordinate in undeformed configuration while (7, 6, z) is cylindrical coordinate in deformed con-
figuration, the axes are along the notch valley. The problem can be treated as plane strain case, so z = Z,
then the deformation can be described by the mapping from (7, 0) to (R, @), which is assumed to be

R=r""9(0), ©=y(0) (13)

where 0 is a positive exponent to be determined. The first mapping function of Eq. (13) possesses singularity
but the second is a regular function. Therefore the domain of rubber wedge does not contain shrinking
sector or expanding sector, this is unlike the case analyzed by Gao and Gao (2000).

The deformation near the wedge apex can also be described by the following mapping functions:

r=R"1©), 0=¢g(0) (14)
where
0
p=1 (15)

functions f and g can be expressed by ¢ and . In the following, only Eq. (13) is discussed.
Let ez, eg, €., €y, denote the unit vectors in (R, ®) and (r, 0) systems respectively, i.e.

oP 1 oP

eR:ﬁv e@:E@ (16)
~0Q _10Q

e =5 =2 (17)

According to Egs. (13) and (16) it follows that

P, =2 = ;%] —§)pe

e s)

Py=5=r""(¢'er + oY'ep)

From Eq. (18), it follows that

P = rb:q_l((/’w,eR — ¢eo) (19)
P’ =7 1g7 (1 — §)peo
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in which
= (1-d)™y (20)

Using Egs. (18), (19) and (2), the invariants can be obtained,

I=¢?p, IL,=r%p, J=r’¢" (21)
where
p=0¢"+ (1 -0 ¢ + ™" (22)

Eq. (21) shows that 7 can be neglected comparing with 7_; in the strain energy W, so that

W =al", (23)
then Egs. (5), (6) and (18) are combined to give

T = —2nar 2 g ! [(1 — 0 0%, @ e + (¢ + ™Y ey @ eg + (1 — 0)pg'(e, D ey + ey ® e,)}

(24)

Noting that

Vo=I0rxQul=r (25)
Substituting Eqgs. (24) and (25) into Eq. (12), it follows that

14

o' [1+200 = D2 + 42 [1 4200 = Dey?] + (20— 55) L = 2(n - 1) %
Y2 = (1= 0)’[1 = 2(n+ 1o} =0

Q' ( 2‘1’,2— ) 2""/’ +(1+%) Q—mj;( —0+% w/_z)

+i5 (W2 = (1= 071 = 2(n + 1)3]} =0

,L
—0

(26)

4. Boundary conditions and solution

The asymptotic analysis (AA) of wedge tip field is only given for small value of r, therefore the governing
equations (26) only contain variable . The unilateral displacement conditions for contact problem are

Y(4) =B,  Y(-4)=-B (27)
The traction conditions for smooth contact are

v1=0 at0=+A (28)
According to Egs. (24) and (28), is follows that

¢'(4) = ¢'(=4) =0 (29)

It should be mentioned that discussed in this paper is only the asymptotic behavior of the wedge tip, i.e.
near the apex of the wedge. The solution will be restricted only to the contact area. Outside of this area, the
boundary conditions must be changed to traction free conditions.
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Eq. (26) under boundary conditions (27) and (29) can be solved numerically. The calculation result
shows that the only solution is

B
® = @y, IP:Aj@ (30)

where ¢, is a constant to indicate the amplitude of the field. Parameter ¢, depends on the loading. The
eigenvalue ¢ is given by

(1_5)2[1_2(n+1)5]=§ (31)

Solutions (30) and (31) are not obtained by analysis, however, when these are substituted into Eq. (26), the
equation is satisfied. From Eqgs. (13) and (30), it follows that

5 B
R= ', O=-90 (32)
A
then Eq. (24) gives
T = —2nar 2" C(1 + C¥)" Mo (1 = 52" (e, @ e, + C2ey @ €) (33)
or
2(n+1)
T= —2na(d—> C(l + Cz)nil(er ® e+ C269 ® 60) (34)
r
where
C=[1-2n+1)8" (35)

So, the completely analytical solution for the asymptotic behavior of the wedge tip is obtained.

5. Finite element result

The contact problem is also calculated by finite element using total Lagrangian (TL) method. We take
a = 1, n = 2. The mesh division is shown in Fig. 2. [soparametric element with four nodes is used, and 500
elements with 551 nodes are taken. The minimum highness of an element is 2 x 1073 times of the wedge
height. For the case of 4 = 50°, B = 30°, the relation of »—R and t—r obtained by finite elements and theory
are plotted in Fig. 3(a) and (b) respectively. For the case of 4 = 70°, B = 15°, the results are plotted in Fig.
4(a) and (b). While R = 0.16 x 107*, the angular distribution of 7", % are plotted in Fig. 5, for 4 = 70°,
B = 15°, the discrepancy between theory and calculation is less than 3.5%. The angular distribution of 7,
7% for A = 50°, B = 30° are not plotted, the discrepancies between theoretical and calculated ©, % are less
than 0.6%c¢. The shape of deformed wedge is shown in Fig. 6.

Fig. 2. FEM mesh.
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Fig. 3. Results of AA and FEM for 4 = 50°, B = 30°: (a) the curves of —R, (b) the curves of 7—r.
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Fig. 4. AA and FEM for 4 = 70°, B = 15°: (a) the curves of R, (b) the curves of 7.

The extremely close correspondence of the analysis with the result of FEM can be explained as follows:
(1) The elastic law is typical but simple. (2) The deformation pattern near the wedge apex can be well
described by the mapping function, i.e. the neglected higher order terms are indeed small.
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Fig. 5. Curves of -0 from AA and FEM for 4 = 70°, B = 15°.

Fig. 6. The shapes of wedge after deformation for 4 = 70°, B = 15°.

6. Conclusions

The analytically asymptotic solution to the contact problem discussed in this paper is obtained and
verified by FEM calculation. The contact problem of a rigid notch with a rubber wedge is unlike the contact
problem with a rigid wedge. The wedge tip field obtained in this paper does not contain either shrinking
sector or expanding sector. The ratio of @ to 0 is constant near the wedge tip.

The mapping function for radius is singular, the singularity é depends on the ratio of angles B/A. Figs.
3(a) and 4(a) reflect the mapping function (13) very well. When the wedge tip is approached, stress 7 and
7% possess singularity of order »—2"*1)% The angular distribution of 7 and % are constants. This can be
obtained by analysis and also can be seen from the curves of Fig. 5. As for the radial variation of 7" and %,
Figs. 3(a) and 4(a) shown the evident singularity, when » — 0, they tend to —oo.
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